CS 188: Artificial Intelligence Spring 2007

Lecture 9: Logical Agents 2 2/13/2007

Srini Narayanan - ICSI and UC Berkeley
Many slides over the course adapted from Dan Klein, Stuart Russell or Andrew Moore

Announcements

ß PPT slides
 ß Assignment 3

Inference by enumeration

B Depth-first enumeration of all models is sound and complete

```
function TT-Entails?(KB,\alpha) returns true or false
    symbols }\leftarrow\textrm{a}\mathrm{ list of the proposition symbols in KB and }
    return TT-CHECK-AlL(KB, \alpha, symbols, [])
function TT-CHECK-ALL(KB, , symbols, model) returns true or false
    if Empty?(symbols) then
        if PL-TruE?(KB, model) then return PL-TruE?( }\alpha\mathrm{ , model)
        else return true
    else do
        P\leftarrowFiRST(symbols); rest \leftarrow < ReST(symbols)
        return TT-Check-All(KB, \alpha, rest, Extend( ( 
            TT-Check-All(KB, \alpha, rest, Extend(P,false, model)
```

B PL-True returns true if the sentence holds within the model
B For n symbols, time complexity is $O\left(2^{n}\right)$, space complexity is $O(n)$

Validity and satisfiability

A sentence is valid if it is true in all models, e.g., True, $\quad A \vee \neg A, \quad A \Rightarrow A, \quad(A \wedge(A \Rightarrow B)) \Rightarrow B$

Validity is connected to inference via the Deduction Theorem:
$K B \neq \alpha$ if and only if $(K B \Rightarrow \alpha)$ is valid
A sentence is satisfiable if it is true in some model
e.g., AvB, C

A sentence is unsatisfiable if it is true in no models e.g., $A \wedge \neg A$

Satisfiability is connected to inference via the following:
$K B=\alpha$ if and only if $(K B \wedge \neg \alpha)$ is unsatisfiable
Satisfiability of propositional logic was instrumental in developing the theory of NP-completeness.

Proof methods

ß Proof methods divide into (roughly) two kinds:

B Application of inference rules
B Legitimate (sound) generation of new sentences from old
ß Proof = a sequence of inference rule applications
Can use inference rules as operators in a standard search algorithm
B Typically require transformation of sentences into a normal form
ß Model checking
B truth table enumeration (always exponential in n)
B improved backtracking, e.g., Davis--Putnam-Logemann-Loveland (DPLL)
B heuristic search in model space (sound but incomplete)
e.g., min-conflicts-like hill-climbing algorithms

Logical equivalence

A To manipulate logical sentences we need some rewrite rules.
$ß$ Two sentences are logically equivalent iff they are true in same models: $\alpha \equiv \beta$ iff $\alpha \vDash \beta$ and $\beta \equiv \alpha$

$(\alpha \wedge \beta)$	$\equiv(\beta \wedge \alpha)$ commutativity of \wedge
$(\alpha \vee \beta)$	$\equiv(\beta \vee \alpha)$ commutativity of \vee
$((\alpha \wedge \beta) \wedge \gamma)$	$\equiv(\alpha \wedge(\beta \wedge \gamma))$ associativity of \wedge
$((\alpha \vee \beta) \vee \gamma)$	$\equiv(\alpha \vee(\beta \vee \gamma))$ associativity of \vee
$\neg(\neg \alpha)$	$\equiv \alpha$ double-negation elimination these to
$(\alpha \Rightarrow \beta)$	$\equiv(\neg \beta \Rightarrow \neg)$ contraposition
$(\alpha \Rightarrow \beta)$	$\equiv(\neg \alpha \vee \beta)$ implication elimination
$(\alpha \Leftrightarrow \beta)$	$\equiv((\alpha \Rightarrow \beta) \wedge(\beta \Rightarrow \alpha)$ biconditional elimination
$\neg(\alpha \wedge \beta)$	$\equiv(\neg \alpha \vee \neg \beta)$ de Morgan
$\neg(\alpha \vee \beta)$	$\equiv(\neg \alpha \wedge \neg \beta)$ de Morgan
$(\alpha \wedge(\beta \vee \gamma))$	$\equiv((\alpha \wedge \beta) \vee(\alpha \wedge \gamma))$ distributivity of \wedge over \vee
$(\alpha \vee(\beta \wedge \gamma))$	$\equiv((\alpha \vee \beta) \wedge(\alpha \vee \gamma))$ distributivity of \vee over \wedge

Conversion to CNF

$B_{1,1} \Leftrightarrow\left(P_{1,2} \vee P_{2,1}\right)$

1. Eliminate \Leftrightarrow, replacing $\alpha \Leftrightarrow \beta$ with $(\alpha \Rightarrow \beta) \wedge(\beta \Rightarrow \alpha)$. $\left(B_{1,1} \Rightarrow\left(P_{1,2} \vee P_{2,1}\right)\right) \wedge\left(\left(P_{1,2} \vee P_{2,1}\right) \Rightarrow B_{1,1}\right)$
2. Eliminate \Rightarrow, replacing $\alpha \Rightarrow \beta$ with $\neg \alpha \vee \beta$. $\left(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}\right) \wedge\left(\neg\left(P_{1,2} \vee P_{2,1}\right) \vee B_{1,1}\right)$
3. Move \neg inwards using de Morgan's rules and doublenegation:

$$
\left(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}\right) \wedge\left(\left(\neg P_{1,2} \wedge \neg P_{2,1}\right) \vee B_{1,1}\right)
$$

4. Apply distributivity law (\wedge over \vee) and flatten: $\left(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}\right) \wedge\left(\neg P_{1,2} \vee B_{1,1}\right) \wedge\left(\neg P_{2,1} \vee B_{1,1}\right)$

Resolution

Conjunctive Normal Form (CNF) conjunction of disjunctions of literals

$$
\text { E.g., }(A \vee \neg B) \wedge(B \vee \neg C \vee \neg D):
$$

Basic intuition, resolve $B, \neg B$ to get $(A) \vee(\neg C \vee \neg D)$ (why?)
B Resolution inference rule (for CNF):

$$
\frac{\left.\left.\right|_{i} \vee \ldots \vee\right|_{k},}{m_{1} \vee \ldots \vee m_{n}}
$$

where I_{i} and m_{j} are complementary literals. E.g., $\frac{P_{1,3} \vee P_{2,2}, \quad \neg P_{2,2}}{P_{1,3}}$

B Resolution is sound and complete for propositional logic.
B Basic Use: $K B=\alpha$ iff $(K B \wedge \neg \alpha)$ is unsatisfiable

Resolution

Soundness of resolution inference rule:

$$
\begin{aligned}
\neg\left(\left.\left.l_{i} \vee \ldots \vee l_{i-1} \vee\right|_{i+1} \vee \ldots \vee\right|_{k}\right) & \left.\Rightarrow\right|_{i} \\
& \neg m_{j}
\end{aligned} \Rightarrow\left(m_{1} \vee \ldots \vee m_{j-1} \vee m_{j+1} \vee \ldots \vee m_{n}\right)
$$

Resolution algorithm

ß Proof by contradiction, i.e., show $K B \wedge \neg \alpha$ unsatisfiable

```
function PL-RESOLUTION(KB, \alpha) returns true or false
    clauses }\leftarrow\mathrm{ the set of clauses in the CNF representation of }KB\wedge\neg
    new}\leftarrow{
    loop do
    for each }\mp@subsup{C}{i}{},\mp@subsup{C}{j}{}\mathrm{ in clauses do
        resolvents}\leftarrow\textrm{PL}-\textrm{ResOLVE}(\mp@subsup{C}{i}{},\mp@subsup{C}{j}{}
        if resolvents contains the empty clause then return true
        new}\leftarrownew\cup resolvent
    if new \subseteqclauses then return false
    clauses }\leftarrow\mathrm{ clauses }\cup\mathrm{ new
```


Resolution example

Either you get an empty clause as a resolvent (success) or no new resolvents are created (failure)

Efficient propositional inference

Two families of efficient algorithms for propositional inference:

Complete backtracking search algorithms
B DPLL algorithm (Davis, Putnam, Logemann, Loveland)
B Incomplete local search algorithms
B WalkSAT algorithm

The DPLL algorithm

Determine if an input propositional logic sentence (in CNF) is satisfiable.

Improvements over truth table enumeration:

1. Early termination

A clause is true if any literal is true.
A sentence is false if any clause is false.
2. Pure symbol heuristic

Pure symbol: always appears with the same "sign" in all clauses.
e.g., In the three clauses $(A \vee \neg B),(\neg B \vee \neg C)$, $(C \vee A), A$ and B are pure, C is impure.
Make a pure symbol literal true.
3. Unit clause heuristic

Unit clause: only one literal in the clause
The only literal in a unit clause must be true.

The WalksAT algorithm

B Incomplete, local search algorithm
B Evaluation function: The min-conflict heuristic of minimizing the number of unsatisfied clauses
ß Balance between greediness and randomness

The WalkSAT algorithm

function WALKSAT(clauses, p, max-flips) returns a satisfying model or failure inputs: clauses, a set of clauses in propositional logic
p, the probability of choosing to do a "random walk" move max-flips, number of flips allowed before giving up
model \leftarrow a random assignment of true/false to the symbols in clause for $i=1$ to max-flips do
if model satisfies clauses then return model
clause \leftarrow a randomly selected clause from clauses that is false in model
with probability p flip the value in model of a randomly selected symbol
from clause
else flip whichever symbol in clause maximizes the number of satisfied clauses return failure

Random walk)

umber of satisfied clauses

Hard satisfiability problems

B Consider random 3-CNF sentences. e.g.,

$$
\begin{aligned}
& (\neg D \vee \neg B \vee C) \wedge(B \vee \neg A \vee \neg C) \wedge(\neg C \vee \\
& \neg B \vee E) \wedge(E \vee \neg D \vee B) \wedge(B \vee E \vee \neg C)
\end{aligned}
$$

$m=$ number of clauses
$n=$ number of symbols
$ß$ Hard problems seem to cluster near $m / n=4.3$ (critical point)

Hard satisfiability problems

Hard satisfiability problems

B Median runtime for 100 satisfiable random 3CNF sentences, $n=50$

Inference-based agents in the wumpus world

A wumpus-world agent using propositional logic:

$$
\begin{aligned}
& \neg \mathrm{P}_{1,1} \\
& \neg \mathrm{~W}_{1,1} \\
& B_{x, y} \Leftrightarrow\left(P_{x, y+1} \vee P_{x, y-1} \vee P_{x+1, y} \vee P_{x-1, y}\right) \\
& S_{x, y} \Leftrightarrow\left(W_{x, y+1} \vee W_{x, y-1} \vee W_{x+1, y} \vee W_{x-1, y}\right) \\
& W_{1,1} \vee W_{1,2} \vee \ldots \vee W_{4,4} \\
& \neg W_{1,1} \vee \neg W_{1,2} \\
& \neg \mathrm{~W}_{1,1} \vee \neg \mathrm{~W}_{1,3}
\end{aligned}
$$

$\Rightarrow 64$ distinct proposition symbols, 155 sentences

function PL-WUMPUS-AGENT (percept) returns an action

inputs: percept, a list, [stench,breeze, glitter]
static: $K B$, initially containing the "physics" of the wumpus world
x, y, orientation, the agent's position (init. $[1,1]$) and orient. (init. right) visited, an array indicating which squares have been visited, initially false action, the agent's most recent action, initially null plan, an action sequence, initially empty
update x, y,orientation, visited based on action
if stench then $\operatorname{Tell}\left(K B, S_{x, y}\right)$ else $\operatorname{Tell}\left(K B, \neg S_{x, y}\right)$
if breeze then $\operatorname{TelL}\left(K B, B_{x, y}\right)$ else $\operatorname{Tell}\left(K B, \neg B_{x, y}\right)$
if glitter then action \leftarrow grab
else if plan is nonempty then action $\leftarrow \operatorname{POP}($ plan $)$
else if for some fringe square $[i, j], \operatorname{Ask}\left(K B_{,}\left(\neg P_{i, j} \wedge \neg W_{i, j}\right)\right)$ is true or for some fringe square $[i, j], \operatorname{Ask}\left(K B,\left(P_{i, j} \vee W_{i, j}\right)\right)$ is false then do plan $\leftarrow \mathrm{A}^{*}$-Graph-SEARCh $($ Route- $\mathrm{PB}([x, y]$, orientation, $[i, j]$,visited $)$) action $\leftarrow \operatorname{POP}($ plan $)$
else action \leftarrow a randomly chosen move
return action

Summary

ß Logical agents apply inference to a knowledge base to derive new information and make decisions
ß Basic concepts of logic:
B syntax: formal structure of sentences
B semantics: truth of sentences wrt models
B entailment: necessary truth of one sentence given another
B inference: deriving sentences from other sentences
B soundness: derivations produce only entailed sentences
ß completeness: derivations can produce all entailed sentences
\& Wumpus world requires the ability to represent partial and negated information, reason by cases, etc.
\& Resolution is complete for propositional logic
ß Propositional logic lacks expressive power

First Order Logic (FOL)

ß Why FOL?
B Syntax and semantics of FOL
B Using FOL
ß Wumpus world in FOL
B Knowledge engineering in FOL

Pros and cons of propositional logic

J Propositional logic is declarative
J Propositional logic allows partial/disjunctive/negated information
B (unlike most data structures and databases)
J Propositional logic is compositional:
B meaning of $B_{1,1} \wedge P_{1,2}$ is derived from meaning of $B_{1,1}$ and of $P_{1,2}$
J Meaning in propositional logic is context-independent
ß (unlike natural language, where meaning depends on context)
L Propositional logic has very limited expressive power
B (unlike natural language)
ß E.g., cannot say "pits cause breezes in adjacent squares" $ß$ except by writing one sentence for each square

First-order logic

\AA Whereas propositional logic assumes the world contains facts,
ß first-order logic (like natural language) assumes the world contains
B Objects: people, houses, numbers, colors, baseball games, wars, ...
ß Relations: red, round, prime, brother of, bigger than, part of, comes between, ...
B Functions: father of, best friend, one more than, plus, ...

Syntax of FOL: Basic elements

ß Constants KingJohn, 2, UCB,...
ß Predicates Brother, >,...
B Functions Sqrt, LeftLegOf,...
B Variables $\quad x, y, a, b, \ldots$
ß Connectives $\neg, \Rightarrow, \wedge, \vee, \Leftrightarrow$
ß Equality =
B Quantifiers $\quad \forall, \exists$

Atomic sentences

Atomic sentence $=$ predicate $\left(\right.$ term $_{1}, \ldots$, term $\left._{n}\right)$ or term ${ }_{1}=$ term $_{2}$

Term $\quad=\quad$ function $\left(\right.$ term $_{1}, \ldots$, term $\left._{n}\right)$ or constant or variable
ß E.g., Brother(KingJohn,RichardTheLionheart)
ß > (Length(LeftLegOf(Richard)),
Length(LeftLegOf(KingJohn)))

Complex sentences

B Complex sentences are made from atomic sentences using connectives

$$
\neg S, S_{1} \wedge S_{2}, S_{1} \vee S_{2}, S_{1} \Rightarrow S_{2}, S_{1} \Leftrightarrow S_{2}
$$

E.g. Sibling(KingJohn,Richard) \Rightarrow

Sibling(Richard,KingJohn)

$$
\begin{aligned}
& >(1,2) \vee \leq(1,2) \\
& >(1,2) \wedge \neg>(1,2)
\end{aligned}
$$

Truth in first-order logic

B Sentences are true with respect to a model and an interpretation
B Model contains objects (domain elements) and relations among them

B Interpretation specifies referents for
constant symbols $\rightarrow \quad$ objects
predicate symbols $\rightarrow \quad$ relations
function symbols $\quad \rightarrow \quad$ functional relations
B An atomic sentence predicate $\left(\right.$ term $_{1}, \ldots$, term $\left._{n}\right)$ is true iff the objects referred to by term $_{1}, \ldots$, term $_{n}$ are in the relation referred to by predicate

Models for FOL: Example

Universal quantification

ß $\forall<$ variables> <sentence>
Everyone at UCB is smart:
$\forall x \operatorname{At}(x, U C B) \Rightarrow \operatorname{Smart}(x)$
ß $\forall x P$ is true in a model m iff P is true with x being each possible object in the model

B Roughly speaking, equivalent to the conjunction of instantiations of P

At(KingJohn,UCB) \Rightarrow Smart(KingJohn)
$\wedge \quad$ At (Richard,UCB) \Rightarrow Smart(Richard)
$\wedge \quad \operatorname{At}(\mathrm{UCB}, \mathrm{UCB}) \Rightarrow \operatorname{Smart}(\mathrm{UCB})$

A common mistake to avoid

A Typically, \Rightarrow is the main connective with \forall
B Common mistake: using \wedge as the main connective with \forall :
$\forall x$ At(x,UCB) $\wedge \operatorname{Smart}(x)$
means "Everyone is at UCB and everyone is smart"

Existential quantification

ß $\exists<$ variables> <sentence>
B Someone at UCB is smart:
ß $\exists x \operatorname{At}(x, U C B) \wedge \operatorname{Smart}(x)$
ß $\exists x P$ is true in a model m iff P is true with x being some possible object in the model

B Roughly speaking, equivalent to the disjunction of instantiations of P

At(KingJohn,UCB) ^ Smart(KingJohn)
\vee At(Richard,UCB) ^ Smart(Richard)
\vee At(UCB,UCB) ^ Smart(UCB)
\vee...

Another common mistake to avoid

$ß$ Typically, \wedge is the main connective with \exists
ß Common mistake: using \Rightarrow as the main connective with \exists :

$$
\exists x \operatorname{At}(x, \mathrm{UCB}) \Rightarrow \operatorname{Smart}(\mathrm{x})
$$

is true if there is anyone who is not at UCB!

Properties of quantifiers

B $\forall x \forall y$ is the same as $\forall y \forall x$
ß $\exists x \exists y$ is the same as $\exists y \exists x$
ß $\exists x \forall y$ is not the same as $\forall y \exists x$
ß $\exists x \forall y$ Loves (x, y)
B "There is a person who loves everyone in the world"
ß $\forall y \exists x \operatorname{Loves}(x, y)$
B "Everyone in the world is loved by at least one person"
B Quantifier duality: each can be expressed using the other
ß $\forall x$ Likes(x,IceCream) $\quad \neg \exists x \neg$ Likes(x,IceCream)
ß $\exists x$ Likes(x,Broccoli) $\quad \neg \forall x \neg$ Likes(x, Broccoli)

Equality

ß term $_{1}=$ term $_{2}$ is true under a given interpretation if and only if term , and $_{1}$ term refer to the same object
ß E.g., definition of Sibling in terms of Parent:
$\forall x, y$ Sibling $(x, y) \Leftrightarrow[\neg(x=y) \wedge \exists m, f \neg(m=f) \wedge$ $\operatorname{Parent}(m, x) \wedge \operatorname{Parent}(f, x) \wedge \operatorname{Parent}(m, y) \wedge \operatorname{Parent}(f, y)]$

Using FOL

The kinship domain:
ß Brothers are siblings
$\forall x, y \operatorname{Brother}(x, y) \Leftrightarrow \operatorname{Sibling}(x, y)$
is One's mother is one's female parent
$\forall \mathrm{m}, \mathrm{c} \operatorname{Mother}(\mathrm{c})=\mathrm{m} \Leftrightarrow($ Female $(\mathrm{m}) \wedge \operatorname{Parent}(m, c))$
$ß$ "Sibling" is symmetric
$\forall x, y \operatorname{Sibling}(x, y) \Leftrightarrow \operatorname{Sibling}(y, x)$

Interacting with FOL KBs

AS Suppose a wumpus-world agent is using an FOL KB and perceives a smell and a breeze (but no glitter) at $t=5$:

> Tell(KB,Percept([Smell,Breeze,None],5))

Ask(KB, ヨa BestAction(a,5))
B I.e., does the KB entail some best action at $t=5$?
B Answer: Yes, $\{a /$ Shoot $\} \quad \leftarrow$ substitution (binding list)
B Given a sentence S and a substitution σ,
B So denotes the result of plugging σ into S; e.g.,
S = Smarter (x, y)
$\sigma=\{x /$ Hillary, $\mathrm{y} /$ Bill $\}$
S $\sigma=$ Smarter(Hillary,Bill)
B Ask(KB,S) returns some/all σ such that $K B=\sigma$

KB for the wumpus world

B Perception
$ß \forall t, s, b$ Percept([s,b,Glitter],t) \Rightarrow Glitter(t)
ß Reflex
B $\forall \mathrm{t}$ Glitter(t$) \Rightarrow$ BestAction(Grab,t)

Deducing hidden properties

B $\forall \mathrm{x}, \mathrm{y}, \mathrm{a}, \mathrm{b} \operatorname{Adjacent}([\mathrm{x}, \mathrm{y}],[\mathrm{a}, \mathrm{b}]) \Leftrightarrow$

$$
[a, b] \in\{[x+1, y],[x-1, y],[x, y+1],[x, y-1]\}
$$

Properties of squares:
ß $\forall \mathrm{s}, \mathrm{t} \operatorname{At}($ Agent,s,t) \wedge Breeze(t) $\Rightarrow \operatorname{Breezy}(\mathrm{s})$
Squares are breezy near a pit:
ß Diagnostic rule--infer cause from effect
$\forall s$ Breezy(s) $\Rightarrow \exists$ r Adjacent(r,s) $\wedge \operatorname{Pit}(r)$
ß Causal rule---infer effect from cause $\forall r \operatorname{Pit}(\mathrm{r}) \Rightarrow[\forall$ s Adjacent $(\mathrm{r}, \mathrm{s}) \Rightarrow \operatorname{Breezy}(\mathrm{s})]$

Knowledge engineering in FOL

1. Identify the task
2. Assemble the relevant knowledge
3. Decide on a vocabulary of predicates, functions, and constants
4. Encode general knowledge about the domain
5. Encode a description of the specific problem instance
6. Pose queries to the inference procedure and get answers
7. Debug the knowledge base

The electronic circuits domain

One-bit full adder

The electronic circuits domain

1. Identify the task

B Does the circuit actually add properly? (circuit verification)
2. Assemble the relevant knowledge

B Composed of wires and gates; Types of gates (AND, OR, XOR, NOT)
B Irrelevant: size, shape, color, cost of gates \square
3. Decide on a vocabulary

B Alternatives:
Type $\left(\mathrm{X}_{1}\right)=\mathrm{XOR}$
Type (X_{1}, XOR) $\operatorname{XOR}\left(\mathrm{X}_{1}\right)$

The electronic circuits domain

4. Encode general knowledge of the domain

B $\forall \mathrm{t}_{1}, \mathrm{t}_{2}$ Connected $\left(\mathrm{t}_{1}, \mathrm{t}_{2}\right) \Rightarrow$ Signal $\left(\mathrm{t}_{1}\right)=$ Signal $\left(\mathrm{t}_{2}\right)$
B $\quad \forall \mathrm{t}$ Signal $(\mathrm{t})=1 \vee \operatorname{Signal}(\mathrm{t})=0$
B $1 \neq 0$
B $\forall \mathrm{t}_{1}, \mathrm{t}_{2} \operatorname{Connected}\left(\mathrm{t}_{1}, \mathrm{t}_{2}\right) \Rightarrow$ Connected $\left(\mathrm{t}_{2}, \mathrm{t}_{1}\right)$
B $\forall \mathrm{g}$ Type $(\mathrm{g})=\mathrm{OR} \Rightarrow \operatorname{Signal}(\operatorname{Out}(1, \mathrm{~g}))=1 \Leftrightarrow \exists \mathrm{n}$ Signal $(\ln (\mathrm{n}, \mathrm{g}))=1$
B $\forall \mathrm{g} \operatorname{Type}(\mathrm{g})=\mathrm{AND} \Rightarrow \operatorname{Signal}(\operatorname{Out}(1, \mathrm{~g}))=0 \Leftrightarrow \exists \mathrm{n}$ Signal $(\ln (\mathrm{n}, \mathrm{g}))=0$
B $\forall \mathrm{g} \operatorname{Type}(\mathrm{g})=\mathrm{XOR} \Rightarrow \operatorname{Signal}(\operatorname{Out}(1, \mathrm{~g}))=1 \Leftrightarrow$ Signal($\ln (1, \mathrm{~g})) \neq$ Signal $(\ln (2, \mathrm{~g}))$
B $\forall \mathrm{g} \operatorname{Type}(\mathrm{g})=$ NOT $\Rightarrow \operatorname{Signal}(\operatorname{Out}(1, \mathrm{~g})) \neq$ Signal($\operatorname{In}(1, \mathrm{~g})$)

The electronic circuits domain

5. Encode the specific problem instance
$\operatorname{Type}\left(\mathrm{X}_{1}\right)=\mathrm{XOR}$
Type $\left(\mathrm{A}_{1}\right)=$ AND
$\operatorname{Type}\left(\mathrm{O}_{1}\right)=\mathrm{OR}$

Connected $\left(\right.$ Out $\left.\left(1, \mathrm{X}_{1}\right), \ln \left(2, \mathrm{~A}_{2}\right)\right) \quad$ Connected $\left(\ln \left(1, \mathrm{C}_{1}\right), \ln \left(1, \mathrm{~A}_{1}\right)\right)$
Connected $\left(\operatorname{Out}\left(1, \mathrm{~A}_{2}\right), \ln \left(1, \mathrm{O}_{1}\right)\right) \quad$ Connected $\left(\ln \left(2, \mathrm{C}_{1}\right), \ln \left(2, \mathrm{X}_{1}\right)\right)$ Connected(Out $\left.\left(1, \mathrm{~A}_{1}\right), \ln \left(2, \mathrm{O}_{1}\right)\right) \quad$ Connected $\left(\ln \left(2, \mathrm{C}_{1}\right), \ln \left(2, \mathrm{~A}_{1}\right)\right)$ Connected(Out(1, $\left.\left.\mathrm{X}_{2}\right), \operatorname{Out}\left(1, \mathrm{C}_{1}\right)\right) \quad$ Connected $\left(\operatorname{In}\left(3, \mathrm{C}_{1}\right), \ln \left(2, \mathrm{X}_{2}\right)\right)$ Connected(Out($1, \mathrm{O}_{1}$), Out $\left.\left(2, \mathrm{C}_{1}\right)\right) \quad$ Connected $\left(\operatorname{In}\left(3, \mathrm{C}_{1}\right), \ln \left(1, \mathrm{~A}_{2}\right)\right)$

Type $\left(\mathrm{X}_{2}\right)=\mathrm{XOR}$
Type $\left(\mathrm{A}_{2}\right)=$ AND

X2))	Connected($\left.\ln \left(1, \mathrm{C}_{1}\right), \ln \left(1, \mathrm{X}_{1}\right)\right)$
Connected(Out($1, \mathrm{X}_{1}$), $\ln \left(2, \mathrm{~A}_{2}\right)$)	Connected ($\left.\ln \left(1, \mathrm{C}_{1}\right), \ln \left(1, \mathrm{~A}_{1}\right)\right)$
Connected(Out($1, \mathrm{~A}_{2}$), In(1, $\left.\mathrm{O}_{1}\right)$)	Connected ($\left.\ln \left(2, \mathrm{C}_{1}\right), \ln \left(2, \mathrm{X}_{1}\right)\right)$
Connected(Out($1, \mathrm{~A}_{1}$), In($\left.2, \mathrm{O}_{1}\right)$)	Connected ($\left.\ln \left(2, \mathrm{C}_{1}\right), \ln \left(2, \mathrm{~A}_{1}\right)\right)$
Connected(Out($1, \mathrm{X}_{2}$), $\operatorname{Out}\left(1, \mathrm{C}_{1}\right)$)	Connected ($\left.\operatorname{In}\left(3, \mathrm{C}_{1}\right), \ln \left(2, \mathrm{X}_{2}\right)\right)$
Connected(Out (1, O_{1}), $\mathrm{Out}\left(2, \mathrm{C}_{1}\right)$)	Connected ($\left.\ln \left(3, \mathrm{C}_{1}\right), \ln \left(1, \mathrm{~A}_{2}\right)\right)$

The electronic circuits domain

6. Pose queries to the inference procedure What are the possible sets of values of all the terminals for the adder circuit?
$\exists \mathrm{i}_{1}, \mathrm{i}_{2}, \mathrm{i}_{3}, \mathrm{O}_{1}, \mathrm{o}_{2} \operatorname{Signal}\left(\operatorname{In}\left(1, \mathrm{C} _1\right)\right)=\mathrm{i}_{1} \wedge$ Signal $\left(\operatorname{In}\left(2, \mathrm{C}_{1}\right)\right)=$ $\mathrm{i}_{2} \wedge$ Signal $\left(\operatorname{In}\left(3, \mathrm{C}_{1}\right)\right)=\mathrm{i}_{3} \wedge$ Signal $\left(\right.$ Out $\left.\left(1, \mathrm{C}_{1}\right)\right)=\mathrm{o}_{1} \wedge$ Signal(Out $\left.\left(2, \mathrm{C}_{1}\right)\right)=\mathrm{O}_{2}$
7. Debug the knowledge base May have omitted assertions like $1 \neq 0$

Summary

ß First-order logic:
B objects and relations are semantic primitives
$ß$ syntax: constants, functions, predicates, equality, quantifiers

B Increased expressive power: sufficient to express real-world problems

